Saturday, 30 July 2016

Best Alternative For Linkedin Data Scraping

Best Alternative For Linkedin Data Scraping

When I started my career in sales, one of the things that my VP of sales told me is that ” In sales, assumptions are the mother of all f**k ups “. I know the F word sounds a bit inappropriate, but that is the exact word he used. He was trying to convey the simple point that every prospect is different, so don’t guess, use data to come up with decisions.

I joined Datahut and we are working on a product that helps sales people. I thought I should discuss it with you guys and take your feedback.

Let me tell you how the idea evolved itself. At Datahut, we get to hear a lot of problems customers want to solve. Almost 30 percent of all the inbound leads ask us to help them with lead generation.

Most of them simply ask, “Can you scrape Linkedin for me”?

Every time, we politely refused.

But not anymore, we figured out a way to solve their problem without scraping Linkedin.

This should raise some questions in your mind.

1) What problem is he trying to solve?– Most of the time their sales team does not have the accurate data about the prospects. This leads to a total chaos. It will end up in a waste of both time and money by selling the leads that are not sales qualified.

2) Why do they need data specifically from Linkedin? – LinkedIn is the world’s largest business network. In his view, there is no better place to find leads for his business than Linkedin. It is right in a way.

3) Ok, then what is wrong in scraping Linkedin? – Scraping Linkedin is against its terms and it can lead to legal issues. Linkedin has an excellent anti-scraping mechanism which can make the scraping costly.

4) How severe is the problem? – The problem has a direct impact on the revenues as the productivity of the sales team is too low. Without enough sales, the company is a joke.

5) Is there a better way? – Of course yes. The people with profiles in LinkedIn are in other sites too. eg. Google plus, CrunchBase etc. If we can mine and correlate the data, we can generate leads with rich information. It will have better quality than scraping LinkedIn.

6) What to do when the machine intelligence fails? – We have to use human intelligence. Period!

Datahut is working on a platform that can help you get leads that match your ideal buyer persona. It will be a complete Business intelligence platform powered by machine and human intelligence for an efficient lead research & discovery.We named it Leadintel. We’ve also established some partnerships that help to enrich the data and saves the trouble of lawsuits.

We are opening our platform for beta users. You can request an invitation using the contact form. What do you think about this? What are your suggestions?

Thanks for reading this blog post. Datahut offers affordable data extraction services (DaaS) . If you need help with your web scraping projects let us know and we will be glad to help.

Source:http://blog.datahut.co/best-alternative-for-linkedin-data-scraping/

Monday, 11 July 2016

Web Scraping Best Practices

Extracting data from the World Wide Web has several challenges as more webmasters are working day and night to lower cases of scraping and crawling of their data in order to survive in the competitive world. There are various other problems you may face when web scraping and most of them can be avoided by adapting and implementing certain web scraping best practices as discussed in this article.

Have knowledge of the scraping tools

Acquiring adequate knowledge of hurdles that may be encountered during web scraping, you will be able to have a smooth web scraping experience and be on the safe side of the law. Conduct a thorough research on the types of tools you will use for scraping and crawling. Firsthand knowledge on these tools will help you find the data you need without being blocked.

Proper proxy software that acts as the middle party works well when you know how to work around HTTP and HTML protocols. Use tools that can change crawling patterns, URLs and data retrieved even when you are crawling on one domain. This will help you abide to the rules and regulations that come with web scraping activities and escaping any legal issues.

Conduct your scraping activities during off-peak hours

You may opt to extract data during times that less people have access for instance over the weekends, during late night hours, public holidays among others. Visiting a website on several instances to retrieve the same type of data is a waste of bandwidth. It is always advisable to download the entire site content to your computer and thereafter you can access it whenever need arises.

Hide your scrapping activities

There is a thin line between ethical and unethical crawling hence you should completely evade being on the top user list of a particular website. Cover up your track as best as you can by making use of proxy IPs to avoid any legal problems. You may also use multiple IP addresses or VPN services to conceal your scrapping activities and lower chances of landing on a website’s blacklist.

Website owners today are very protective of their data and any other information existing under their unique url. Be keen when going through the terms and conditions indicated by websites as they may consider crawling as an infringement of their privacy. Simple etiquette goes a long way. Your web scraping efforts will be fruitful if the site owner supports the idea of sharing data.

Keep record of your activities

Web scraping involves large amount of data.Due to this you may not always remember each and every piece of information you have acquired, gathering statistics will help you monitor your activities.

Load data in phases

Web scraping demands a lot of patience from you when using the crawlers to get needed information. Take the process in a slow manner by loading data one piece at a time. Several parallel request to the same domain can crush the entire site or retrace the scrapping attempts back to your local machine.

Loading data small bits will save you the hustle of scrapping afresh in case that your activity has been interrupted because you will have already stored part of the data required. You can reduce the loading data on an individual domain through various techniques such as caching pages that you have scrapped to escape redundancy occurrences. Use auto throttling mechanisms to increase the amount of traffic to the website and pause for breaks between requests to prevent getting banned.

Conclusion

Through these few mentioned web scraping best practices you will be able to work around website and gather the data required as per clients’ request without major hurdles along the way. The ultimate goal of every web scraper is to be able to access vital information and at the same time remain on the good side of the law.

Source URl : http://nocodewebscraping.com/web-scraping-best-practices/

Sunday, 10 July 2016

How to Avoid the Most Common Traps in Web Scraping?

A lot of industries are successfully using web scraping for creating massive data banks of applicable and actionable data which can be used on every day basis for further business interests as well as offer superior services to the customers. However, web scraping does have its own roadblocks and problems.

Using automated scraping, you could face many common problems. The web scraping spiders or programs present a definite picture to their targeted websites. Then, they use this behavior for making out between the human users as well as web scraping spiders. According to those details, a website can employ a certain web scraping traps for stopping your efforts. Here are some of the most common traps:

How Can You Avoid These Traps?

Some measures, which you can use to make sure that you avoid general web scraping traps include:

• Begin with caching pages, which you already have crawled and make sure that you are not required to load them again.
• Find out if any particular website, which you try to scratch has any particular dislikes towards the web scraping tools.
• Handle scraping in moderate phases as well as take the content required.
• Take things slower and do not overflow the website through many parallel requests, which put strain on the resources.
• Try to minimize the weight on every sole website, which you visit to scrape.
• Use a superior web scraping tool that can save and test data, patterns and URLs.
• Use several IP addresses to scrape efforts or taking benefits of VPN services and proxy servers. It will assist to decrease the dangers of having trapped as well as blacklisted through a website.

Source URL :http://www.3idatascraping.com/category/web-data-scraping

Thursday, 7 July 2016

Scraping the Royal Society membership list

To a data scientist any data is fair game, from my interest in the history of science I came across the membership records of the Royal Society from 1660 to 2007 which are available as a single PDF file. I’ve scraped the membership list before: the first time around I wrote a C# application which parsed a plain text file which I had made from the original PDF using an online converting service, looking back at the code it is fiendishly complicated and cluttered by boilerplate code required to build a GUI. ScraperWiki includes a pdftoxml function so I thought I’d see if this would make the process of parsing easier, and compare the ScraperWiki experience more widely with my earlier scraper.

The membership list is laid out quite simply, as shown in the image below, each member (or Fellow) record spans two lines with the member name in the left most column on the first line and information on their birth date and the day they died, the class of their Fellowship and their election date on the second line.

Later in the document we find that information on the Presidents of the Royal Society is found on the same line as the Fellow name and that Royal Patrons are formatted a little differently. There are also alias records where the second line points to the primary record for the name on the first line.

pdftoxml converts a PDF into an xml file, wherein each piece of text is located on the page using spatial coordinates, an individual line looks like this:

<text top="243" left="135" width="221" height="14" font="2">Abbot, Charles, 1st Baron Colchester </text>

This makes parsing columnar data straightforward you simply need to select elements with particular values of the “left” attribute. It turns out that the columns are not in exactly the same positions throughout the whole document, which appears to have been constructed by tacking together the membership list A-J with that of K-Z, but this can easily be resolved by accepting a small range of positions for each column.

Attempting to automatically parse all 395 pages of the document reveals some transcription errors: one Fellow was apparently elected on 16th March 197 – a bit of Googling reveals that the real date is 16th March 1978. Another fellow is classed as a “Felllow”, and whilst most of the dates of birth and death are separated by a dash some are separated by an en dash which as far as the code is concerned is something completely different and so on. In my earlier iteration I missed some of these quirks or fixed them by editing the converted text file. These variations suggest that the source document was typed manually rather than being output from a pre-existing database. Since I couldn’t edit the source document I was obliged to code around these quirks.

ScraperWiki helpfully makes putting data into a SQLite database the simplest option for a scraper. My handling of dates in this version of the scraper is a little unsatisfactory: presidential terms are described in terms of a start and end year but are rendered 1st January of those years in the database. Furthermore, in historical documents dates may not be known accurately so someone may have a birth date described as “circa 1782? or “c 1782?, even more vaguely they may be described as having “flourished 1663-1778? or “fl. 1663-1778?. Python’s default datetime module does not capture this subtlety and if it did the database used to store dates would need to support it too to be useful – I’ve addressed this by storing the original life span data as text so that it can be analysed should the need arise. Storing dates as proper dates in the database, rather than text strings means we can query the database using date based queries.

ScraperWiki provides an API to my dataset so that I can query it using SQL, and since it is public anyone else can do this too. So, for example, it’s easy to write queries that tell you the the database contains 8019 Fellows, 56 Presidents, 387 born before 1700, 3657 with no birth date, 2360 with no death date, 204 “flourished”, 450 have birth dates “circa” some year.

I can count the number of classes of fellows:

select distinct class,count(*) from `RoyalSocietyFellows` group by class

Make a table of all of the Presidents of the Royal Society

select * from `RoyalSocietyFellows` where StartPresident not null order by StartPresident desc

…and so on. These illustrations just use the ScraperWiki htmltable export option to display the data as a table but equally I could use similar queries to pull data into a visualisation.

Comparing this to my earlier experience, the benefits of using ScraperWiki are:

•    Nice traceable code to provide a provenance for the dataset;

•    Access to the pdftoxml library;

•    Strong encouragement to “do the right thing” and put the data into a database;

•    Publication of the data;

•    A simple API giving access to the data for reuse by all.

My next target for ScraperWiki may well be the membership lists for the French Academie des Sciences, a task which proved too complex for a simple plain text scraper…

Sources URL :                             http://yellowpagesdatascraping.blogspot.in/2015/06/scraping-royal-society-membership-list.html

Saturday, 18 June 2016

Web Data Extraction Services and Data Collection Form Website Pages

For any business market research and surveys plays crucial role in strategic decision making. Web scrapping and data extraction techniques help you find relevant information and data for your business or personal use. Most of the time professionals manually copy-paste data from web pages or download a whole website resulting in waste of time and efforts.

Instead, consider using web scraping techniques that crawls through thousands of website pages to extract specific information and simultaneously save this information into a database, CSV file, XML file or any other custom format for future reference.

Examples of web data extraction process include:
• Spider a government portal, extracting names of citizens for a survey
• Crawl competitor websites for product pricing and feature data
• Use web scraping to download images from a stock photography site for website design

Automated Data Collection
Web scraping also allows you to monitor website data changes over stipulated period and collect these data on a scheduled basis automatically. Automated data collection helps you discover market trends, determine user behavior and predict how data will change in near future.

Examples of automated data collection include:
• Monitor price information for select stocks on hourly basis
• Collect mortgage rates from various financial firms on daily basis
• Check whether reports on constant basis as and when required

Using web data extraction services you can mine any data related to your business objective, download them into a spreadsheet so that they can be analyzed and compared with ease.

In this way you get accurate and quicker results saving hundreds of man-hours and money!

With web data extraction services you can easily fetch product pricing information, sales leads, mailing database, competitors data, profile data and many more on a consistent basis.

Source URL :    http://ezinearticles.com/?Web-Data-Extraction-Services-and-Data-Collection-Form-Website-Pages&id=4860417

Thursday, 12 May 2016

Web scraping in under 60 seconds: the magic of import.io

This post was written by Rubén Moya, School of Data fellow in Mexico, and originally posted on Escuela de Datos.

Import.io is a very powerful and easy-to-use tool for data extraction that has the aim of getting data from any website in a structured way.
It is meant for non-programmers that need data (and for programmers who don’t want to overcomplicate their lives).

I almost forgot!! Apart from everything, it is also a free tool (o_O)

The purpose of this post is to teach you how to scrape a website and make a dataset and/or API in under 60 seconds. Are you ready?

It’s very simple. You just have to go to http://magic.import.io; post the URL of the site you want to scrape, and push the “GET DATA” button.
Yes! It is that simple! No plugins, downloads, previous knowledge or registration are necessary. You can do this from any browser; it even
works on tablets and smartphones.

For example: if we want to have a table with the information on all items related to Chewbacca on MercadoLibre (a Latin American version
of eBay), we just need to go to that site and make a search – then copy and paste the link (http://listado.mercadolibre.com.mx/chewbacca)
on Import.io, and push the “GET DATA” button.

You’ll notice that now you have all the information on a table, and all you need to do is remove the columns you don’t need. To do this, just
place the mouse pointer on top of the column you want to delete, and an “X” will appear.

Finally, it’s enough for you to click on “download” to get it in a csv file.
In our example, we have 373 pages with 48 articles each. So this option will be very useful for us.

Good news for those of us who are a bit more technically-oriented! There is a button that says “GET API” and this one is good to, well,
generate an API that will update the data on each request. For this you need to create an account (which is also free of cost).

As you saw, we can scrape any website in under 60 seconds, even if it includes tons of results pages. This truly is magic, no? For more
complex things that require logins, entering subwebs, automatized searches, et cetera, there is downloadable import.io software… But I’ll
explain that in a different post.

Source : http://schoolofdata.org/2014/12/09/web-scraping-in-under-60-seconds-the-magic-of-import-io/

Thursday, 28 April 2016

Exploring Web Data Extraction And Its Different Techniques

Web scraping or web data extraction is a distinctive process based on computer software to extract information from different websites. Mostly business organizations are dependent on the web resources for collecting crucial information relating to decision making. With the analysis of such data, they can identify the existing trends of market, details, prices, and product specification. Looking at the time consuming process of manual data extraction, the prominence of data extraction techniques increases.

Different data scraping techniques

Several data extraction techniques are available for the businesses to extract useful information for successful operations. Some of them may include:

    Logical extraction: It comprises logical data extraction of complete source system as well as incremental.
    Physical extraction: This technique involves two different mechanisms for web scrapping that include both online as well as offline.
    HTTP programming: You can also extract data from both dynamic and static websites by implying the technique of socket programming. It allows you to post HTTP requests on the remote web servers.
    Web scraping software: Several software tools are available in the market that serves your individual needs of extracting data with ease. It automatically attempts to recognize the structure of data for a page and extracts the content for further analysis.
    Web scrapping tools: Besides the availability of reliable software, numerous user-friendly web scrapping tools are also helpful in simplifying the entire web scraping process.

Hire a website scrapper

Hiring a suitable website scraper that offers website data extraction services for all your business requirements is an ideal way amongst all other techniques. It provides you filtered and reliable data according to your need for analysis. Some of the major advantages of using website scrapping services may include:

    Automation of data.
    It can retrieve web pages of both static as well as dynamic websites.
    It is also capable of transforming the content into useful information.
    Provides reliable and accurate data.
    It also recognizes several semantic annotations.

Scraping service versus tools

Web scraping services gain more privilege than other tools and software. The basic reason behind this preference is that the service providers are comparatively cheaper than the tools. In fact, they maintain better accuracy and reliability of data.

Summary: It is advisable to look out for suitable web data extraction services instead of any tools or software. This helps in acquiring customized and structured data for your business in legal manner.


 Source : http://www.web-parsing.com/blog/exploring-web-data-extraction-and-its-different-techniques/